文/郝鑫,清华—伯克利深圳学院博士研究生;孔英,清华—伯克利深圳学院、加拿大约克大学经济系、北京师范大学创新管理与经济研究院教授、博士生导师
作为世界第一大排放国,中国通过宣布碳中和目标,主动承担起国际责任,既是一个负责任大国担当的表现,也是我国实现高质量绿色发展的内在要求。碳中和目标的实现,需要我们对经济社会各行业各部门实施更进一步的减排政策,电力行业总排放量巨大,是目标实现的关键。
一、电力行业低碳转型是减少碳排放、实现碳中和目标的重要抓手
中国一次能源消费中最主要的是煤炭,其碳排放约占全国总排放的80%,其中煤电又占了煤炭消费的50%左右。2019年中国全社会排放总量的43%由电力行业贡献,为42.27亿吨。在IPCC1.5℃目标及我国承诺2030年实现碳达峰、2060年实现碳中和的背景下,电力行业的减排潜力巨大,其低碳转型发展对于中国实现碳中和战略目标至关重要。
我国可再生资源禀赋优异,近年来在技术积累上也取得巨大进步,因此,可再生能源发展已经被视为调整能源战略、保障能源安全、改善生态环境及应对气候变化和减排承诺的国家级战略,未来也将作为电力低碳转型的重要驱动力。我国能源发展相关政策提出,到2030年,非化石能源占一次能源消费比重达到25%以上,非化石能源发电量占全部发电量的比重力争达到50%。发达国家经过了十几年的研究和实践,已经将可再生能源视为未来电力行业的主流能源和主力能源。一些欧洲发达国家也已经提出消除煤电、大规模使用可再生能源发电的目标(表1)。研究机构也普遍认为,可再生能源在电力消费中的比例将得到大幅提升,并发挥主力能源的作用。
基于碳达峰、碳中和的目标,结合我国电力行业低碳转型的战略要求,电力行业低碳转型必须实现可再生能源的高比例覆盖,为构建清洁低碳、安全高效的现代能源体系打好基础。
二、电力行业实现碳中和目标面临的挑战
碳中和目标的实现,是一个复杂的、涉及经济社会各部门联动的长期系统性问题。作为能源系统最大的碳排放部门,电力行业的减排动力和压力并存。我国电力行业经过几十年的发展,现有的发电技术条件、电网设施条件、配套产业条件等世界领先,是实现碳中和的基础保障和重要动力。但也要清楚地认识到,由于电力行业自身的客观条件和发展特点,未来实现碳中和目标还面临很多的挑战。
1. 煤电的“碳锁定”效应影响减排进程
近些年为了满足经济高速发展的需求,中国电力消费长期处在增长通道中,主要依靠新建大量火电机组来满足需求的增加。2020年中国新投运燃煤电厂3840万千瓦,占全球总量的76%,总装机高达10.4亿千瓦,约占全球煤电总装机的50%。中国煤电机组的平均运行年龄仅为12年,显著低于欧美国家平均运行40年的水平。大量的煤电设施如果提前加速淘汰,一方面会严重影响现有电力系统安全稳定运行,另一方面也是对固定资产投资的严重浪费,产生巨大的经济成本。同时,煤电相关行业的从业人数接近400万人,相关的决策也关联着关键的经济和就业问题。但如果不对煤电进行提前淘汰,电力行业现有的大量煤电装机至少还有15~20年的运行寿命,其未来锁定的碳排放总量,会严重影响碳达峰和碳中和目标的实现。针对煤电带来的经济支持作用和“碳锁定”影响,如何正确看待其辩证关系,是我们在电力行业低碳转型过程中面临的首要问题。
2. 现有的技术和设备条件限制,制约大规模可再生能源发展
随着技术的不断进步,可再生能源发电成本持续下降,研究显示,2021年中国的光伏发电成本将低于燃煤发电成本,陆上风电也将很快达到这一水平。但成本的降低并不能直接推动高比例可再生能源发电的充分利用,我国近几年出现了严重的“弃风弃光弃水”现象,2018年全年的“三弃”电量超过同时期三峡电站的总发电量。虽然通过相关的政策引导,到2020年我国的可再生能源利用率大幅提高,但每年仍有近几百亿度的电力损失。问题的根源在于可再生能源发电受自然资源禀赋的影响,具有不可控和随机波动性,而电力供需的最大特点就是必须保证供需的瞬时平衡性,以现有的电力设施和技术条件,很难在短时间内解决两者之间的矛盾。
我国的可再生能源资源主要集中在三北地区和西南地区,而电力负荷中心则在华中和华东地区,现有的跨区域电力外送通道无法满足传输需求;配电网智能化水平不高,也难以满足分布式发电并网运行的相关需求。大容量的储能设施是调节可再生能源发电不连续性和用电需求连续性之间矛盾的重要措施,但现有的抽水蓄能电站受限于位置因素,未来远不能支撑整个电网的储能需求。分布式储能技术将会是未来发展的重点,但相关的电化学储能、压缩空气储能等技术研究目前处于起步阶段,未来大规模商业化应用具有不确定性。电网设施的扩容升级、储能技术的应用推广等都无法在短时间内实现,技术方向也存在不确定性,使现有能源、电力系统还难以承受无任何约束的新能源大规模发展,严重制约未来大规模可再生能源的发展。
3. 现有的电力市场体系不适应大规模可再生能源发展需要
近几年出现的“弃风弃光”现象,虽然直接原因是可再生能源发电的波动性、间歇性特点与电力传输容量不足等,但更深层次原因则是我国现行的电力市场运行体系限制了大规模可再生能源并网发电。可再生能源发电与电网之间缺乏有效的协调机制,现有的电力调度机制仍由政府部门指导确定,限制了大规模可再生能源发电并网。现行的上网电价机制总体采用分地区、分类型的标杆上网电价机制,计划性的定价无法反映市场的实际供需情况,也无法引导整个电网的灵活运行。
另外,现有的以省为主体的电力工业和市场建设,虽然客观上推动了我国电力行业前几十年的发展,保障了地区电力系统的平稳运营。但未来随着可再生能源的大规模并网,跨区域的电力传输与调度将成为常态,现有的省级电力市场对未来全国电力系统的规划与调整、跨区域电网运行等都会产生一定的约束作用,不利于区域间的电力交易与服务发展。
4. 低碳转型需要大量资金投入
电力行业的低碳转型要求实现高比例的可再生能源发电并网,这就对我国现有的整个电力行业提出了新的要求。转型的成本不仅是对可再生能源发电设备的直接投资,还包括为满足大规模可再生能源发电并网带来的火电厂的灵活性改造成本、整个电网系统的扩容升级成本、碳捕集技术的研发和应用成本、储能设施的研发和投资成本等。清华大学气候变化与可持续发展研究院牵头的《中国长期低碳发展战略与转型路径研究》报告指出,今后30年,中国若要接近实现净零排放,需要能源领域的低碳投资138万亿元;据中国投资协会的研究,中国未来在可再生能源和技术等领域需要投资近70万亿元。如此大体量的投资需求,对全国而言既是绿色金融快速发展的机遇,又是对整个金融体系创新升级的挑战。几十万亿元的投资需求,仅靠政府是远远不够的,如何引导和支持各类资本有序进入,实现风险可控情况下的电力行业转型升级,是实现碳中和目标的重要议题。
三、电力行业实现碳中和目标的情景分析
基于SWITCH模型框架,我们构建了功能完善、技术信息丰富,适用于中国问题分析的自下而上分析模型。重点聚焦至2050年的中国电力行业低碳发展情景,讨论在满足1.5℃目标下的中国电力行业发电结构、装机部署、电网传输、排放轨迹等方面的可能性,探究切实可行的电力行业脱碳路径和实施方案。
(一)电力行业优化模型构建
我们构建的中国省级电力行业优化模型,涵盖32个省级电网分区,18种未来能够大规模应用的电力行业技术(表2)。建立了包含成本、技术指标等详细信息,共涉及217个参数的电力部门数据库。模型以电网负荷曲线为基础,可以模拟每一个运行年内小时级的各省级电网的生产、传输和消费,并根据运行情况得到电力行业的排放情况。模型的目标函数是在满足电力需求的情况下,考虑运行约束、排放约束、传输约束等,最小化电力供给成本,包括投资成本、运行成本、传输成本等。
1. 分析框架
根据电力行业特点,模型的分析框架包含电力需求模块、电力生产模块以及电力传输模块三大部分(图1)。电力需求模块根据人口、产业、技术、城镇化水平等宏观经济分析数据,结合省级电网负荷曲线展望未来省级区域分部门的用电需求结构及趋势。电力生产是模型分析的核心,以小时级的时间尺度为分析基础,详细描述32个省级区域的18种发电技术组合,分析各省级区域的发电技术装机结构及发展趋势,各发电技术的出力及发电顺序等。电力传输模块主要关注未来区域间电力传输通道的投资建设成本,以及省级和大电网区域间的电力传输规则、传输通道容量等。核心分析在于省级区域电网传输规则矩阵构建,输出电力传输约束条件。
2. 转型情景设计
现有多项研究表明,中国要想实现2060年碳中和的目标,只遵循2℃的发展目标是远远不够的,必须采取更有力的政策与措施,沿着1.5℃目标的路径深入探索,并在2050年实现“零排放”或者更进一步的“负排放”。根据我国未来低碳战略的需要,我们设定了两组情景来模拟未来可能的低碳转型过程:基准情景和零碳情景。
基准情景下,电力行业延续现有的政策与趋势,不采取进一步的减排行动,作为情景比较的基础。具体包括:以现有的规划和政策为基础,不考虑碳达峰、碳中和目标,不额外设定可再生能源占比、碳排放约束等条件。
零碳情景下,到2030年,落实新提出的国家自主贡献目标,风电、太阳能发电总装机容量将达到12亿千瓦以上,非化石能源发电占比达到60%以上;2020年之后,进一步减少煤电,并不再增加煤电项目;2030年后碳捕集类技术(CCS)开始应用;2030—2050年的碳排放预算与《巴黎协定》中一致;2050年实现零排放或者负排放。 |